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1 Introduction

This document is the supplemental material for SIGGRAPH late breaking submission ISHair: Importance Sampling for Hair Scattering.
Due to the limited space in the one-page abstract, we are not able to provide all the details in the sketch. Instead, we provide the complete
set of derivations, rendering results and pseudocode implementation in this document. This document is organized as following: Section 2
is the full length paper submitted to EGSR 2012, which provides interested readers the motivation and background knowledge for our work,
and a more complete set of results. Section 3 gives the detailed derivations of equations used in our approach. Section 4 provides rendering
comparisons between our approach and [Hery and Ramamoorthi 2011]. Section 5 contains the pseudocode implementation of our approach
written in Python. It can be easily translated into other programming languages.



2 Paper

The following pages are the full paper submitted to EGSR 2012 (decision pending). They are for review purpose only.
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Figure 1: Comparison between stratified uniform sampling and our importance sampling method. (a) Hair under environment lighting ren-
dered with global illumination using path tracing. Our method efficiently samples the scattering direction in multiple bounces and converges
with significanly fewer samples than uniform sampling. (b) Direct illumination of hair under environment lighting rendered with a production
renderer. Our method delivers better image quality than rendering with 4× number of uniform samples.

Abstract

We present an importance sampling method for the bidirectional
scattering distribution function (bsdf ) of hair. Our method is based
on the multi-lobe hair scattering model presented by Sadeghi et al.
[2010]. We reduce noise by drawing samples from a distribution
that approximates the bsdf well. Our algorithm is efficient and
easy to implement, since the sampling process requires only the
evaluation of a few analytic functions, with no significant memory
overhead or need for precomputation. We tested our method in a
research raytracer and a production renderer based on micropoly-
gon rasterization. We show significant improvements for rendering
direct illumination using multiple importance sampling and for ren-
dering indirect illumination using path tracing.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;

Keywords: hair rendering, importance sampling

1 Introduction

Hair is a ubiquitous element of human and animal characters. High-
quality hair rendering is essential to provide believable appearance
in digitally-created content. We are interested in rendering hair lit
by area and environment lights without precomputation to support
dynamic scenes. These physically based light sources have become
prevalent in both visual effects and animated feature films.

Marschner et al. introduced a physically-based scattering model
that captures all the nuances of hair’s appearance [Marschner et al.
2003]. However, this model is computationally expensive, requir-
ing the solution of a cubic equation derived by internal path anal-
ysis. Moreover, it is cumbersome for artists to directly control the
appearance of hair by changing the model’s parameters. To address
these problems, Sadeghi et al. proposed an artist-friendly shading

model for hair that approximates Marschner’s model using only el-
ementary functions, making it easier for artists to control than the
purely physical based model [Sadeghi et al. 2010]. In this paper,
we concentrate on this latter model.

Both these hair shading models have narrow peaks in their spec-
ular lobes, especially for shiny hair. This causes severe noise in
Monte Carlo based rendering methods, especially when combined
with large area lights and environment maps. Importance sampling
is a widely used variance reduction technique for Monte Carlo nu-
merical integration. In the context of rendering, importance sam-
pling offers a means to reduce the variance by concentrating sam-
ples in regions with significant contribution to the illumination in-
tegral. We present an efficient importance sampling method for the
hair scattering bsdf of [Sadeghi et al. 2010]. Our method is capable
of significantly improving the quality of the rendered image, as seen
in Figure 1, with negligible overhead. We reduce noise by drawing
samples from a distribution that approximates well the scattering
function in [Sadeghi et al. 2010]. We do so efficiently since draw-
ing samples requires only the evaluation of a few analytic func-
tions, with no precomputation or significant memory footprint. We
found our method easy to implement both in a prototype path tracer
and in a micropolygon based production renderer. In both cases,
results are further improved by using importance sampling of the
bsdf in conjunction with importance sampling of lighting, a tech-
nique commonly known as multiple importance sampling [Veach
and Guibas 1995].

The main contribution of our work is to provide a sampling algo-
rithm for hair scattering that is effective (at reducing noise), robust,
simple to implement and efficient to evaluate. In the remainder of
the paper, we start with a brief overview of related work, followed
by the presentation of our algorithm and results, and end with the
discussion and conclusion.

2 Related Work

Photorealistic Hair Rendering. There is a large body of work re-
garding hair modeling and shading. Here we review only the pub-
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Figure 2: Error images of [Hery and Ramamoorthi 2011] and our
method. The edge cases of Box-Muller transform is not correctly
handled in [Hery and Ramamoorthi 2011], resulting in incorrect
energy estimation at grazing angles. Moreover, their method will
not converge to correct solution as sample count increases. (The
error images are computed using per-pixel L2 difference. )

lications most closely related to our work, referring the reader to
[Ward et al. 2007] for a detailed review. Kajiya and Kay proposed
the first prominant model for hair rendering where they modeled the
hair bsdf by computing light scattering from thin cylinders [Kajiya
and Kay 1989]. Marschner et al. improved upon this model by in-
corporating internal path analysis of hair strands [Marschner et al.
2003]. Marschner’s work was the first complete physically-based
hair shading model, capable of capturing the complex scattering
behavior of hair. Zinke and Weber proposed a more general frame-
work for filaments scattering [Zinke and Weber 2007]. Inspired by
Marschner’s model, Sadeghi et al. derived a practical hair shading
model that is more efficient and easier for artist to control [Sadeghi
et al. 2010]. d’Eon et al. proposed an energy conserving hair re-
flectance model that includes several modifications to Marschner’s
model to ensure energy conservation during scattering [d’Eon et al.
2011]. These models focus on providing accurate bsdfs for hair, but
none provides an efficient method to importance sample the scat-
tering functions. This is the focus of our work. While our method
speeds up multiple scattering using Monte Carlo methods, it can
also be integrated with more efficient multiple scattering solutions
such as [Moon and Marschner 2006; Moon et al. 2008; Zinke et al.
2008].

Importance Sampling Surface Materials. High-quality Monte
Carlo rendering requires the ability to importance sample realis-
tic bsdf models. There has been extensive research on importance
sampling surface bsdfs, as summarized in [Pharr and Humphreys
2010]. Analytic methods exist only for simple bsdfs such as Phong
[Phong 1975], Lafortune [Lafortune et al. 1997] and Ward [Larson
1992]. For more complex bsdfs and measured material, approxi-
mations of varying degrees of quality are applied. A more general
solution is to derive importance sampling functions using factorized
representations or basis projections of bsdfs [Lawrence et al. 2004;
Clarberg et al. 2005; Jarosz et al. 2009]. However, these methods
require precomputation and have a high memory footprint, making
them impractical for spatially-varying materials. Our method uses
an accurate analytic approximation that does not suffer from these
constraints.

Importance Sampling Hair. Moon and Marschner proposed to
sample the scattering directions by tracing rays through a rough

symbol description

S(θi, φi, θr, φr) hair bsdf
MR,MTT,MTRT longitudinal scattering functions

NR,NTT,NTRT-g,Ng azimuthal scattering functions

ωi incoming direction
ωr reflected direction
u hair direction, pointing from the root to the tip

v,w axes of the normal plane, orthogonal to u

θi, θr inclination of ωi and ωr w.r.t the normal plane
where 0◦ is perpendicular to u, 90◦ is u, and−90◦ is−u

φi, φr azimuthal angles of ωi and ωr in the normal plane
where v is 0◦ and w is 90◦

φ relative azimuthal angle, φ = φr − φi
θd longitudinal difference angle θd = (θr − θi)/2
θh longitudinal half angle θh = (θr + θi)/2

Table 1: Summary of notation.

elliptical cylinder, instead of importance sampling the hair bsdf
[Moon and Marschner 2006]. Moon et al. sped up this process us-
ing a precomputed lookup table [Moon et al. 2008]. These methods
were either computationally expensive or required precomputation.
Neulander et al. derived a practical importance sampling algorithm
based on a cone-shell hair bsdf model, which was a variant of the
Kajiya-Kay model [Neulander 2010]. Their method, however, does
not support hair models that have multiple specular lobes with dif-
ferent widths and offsets, so it does not apply to Marschner’s hair
model or its variants. Hery and Ramamoorthi proposed an impor-
tance sampling method for the reflection lobe of hair bsdf [Hery
and Ramamoorthi 2011]. Their method relied on the Box-Muller
transform to sample the Gaussian distribution. This approach has
several difficult edge cases and the solution presented in [Hery and
Ramamoorthi 2011] has significant error and bias that can result in
rendering artifacts (see Figure 2 and Appendix B).

Hair Rendering under Environment Lighting. Hair rendering
under environment lighting benefits from an efficient bsdf impor-
tance sampling algorithm. This case is so common that algorithms
have been developed specifically for it [Ren et al. 2010; Xu et al.
2011]. While these methods work well in their problem domain,
they are limited to environment lighting and require a considerable
amount of precomputation. Moreover, they are all derived by ap-
proximations of the illumination integral, which makes it hard to
integrate shadowing from complex dynamic occluders into these
methods. These constraints limit their applicability in production
rendering.

3 Hair Importance Sampling

We start the presentation of our importance sampling method with
a summary of the hair shading model it supports, followed by the
derivation of sampling functions for all the lobes of the hair bsdf
and a complete description of our algorithm and its implementation.
We follow the notation summarized in Table 1.

3.1 Hair Shading Function

Sadeghi et al. [2010] propose an artist-friendly hair shading model,
where the scattering function S(θi, φi, θr, φr) of hair fibers is de-
composed into four individual components: reflection (R), refrac-
tive transmission (TT), secondary reflection without glint (TRT-g)
and Glint (g). Each component is represented as a separate lobe
and further factored as the product of a longitudinal term M and an
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Figure 3: Shapes of each hair lobes: Longitudinal lobes (Left).
Azimuthal lobes (Right).

azimuthal term N . The full scattering model is:

S(θi, φi, θr, φr) = IRMR(θh)NR(φ)/ cos
2 θd

+ ITTMTT(θh)NTT(φ)/ cos
2 θd (1)

+ ITRTMTRT(θh)NTRT-g(φ)/ cos
2 θd

+ ITRTMTRT(θh)IgNg(φ)/ cos
2 θd

IR, ITT and ITRT are the colored intensities of the corresponding
lobe while Ig is the additional intensity of the Glint lobe.

MR, MTT and MTRT model the longitudinal variation of each lobe.
All three are Gaussian functions of the longitudinal half angle θh as

MR = g(β2
R, αR, θh) MTT = g(β2

TT, αTT, θh)

MTRT = g(β2
TRT, αTRT, θh)

where βR, βTT, βTRT and αR, αTT, αTRT are the widths and means
of corresponding Gaussian functions. α controls the highlight shift
of each lobe, while β changes the roughness of the hair. In our
notation,

g(β2, α, θh) = exp

[
− (θh − α)2

2β2

]

NR,NTT,NTRT-g andNg model the azimuthal variation of each lobe.
All azimuthal terms are functions of the relative azimuthal angle
φ = φr − φi and are defined respectively as

NR = cos(φ/2) NTT = g(γ2
TT, π − φ)

NTRT-g = cos(φ/2) Ng = g(γ2
g , |φ| − φg)

where γTT is a user controllable azimuthal width for NTT. Ng has
two Gaussian functions with widths γg that are symmetric about the
axis φ = 0, and φg is the half angle between its peaks.

3.2 Importance Sampling

To efficiently reduce variance in Monte Carlo integration, we seek
to draw samples from a distribution whose probability distribution
function (pdf ) is proportional to the function we are integrating.
In the context of hair rendering, we want to sample ωi such that
p(ωi) ∝ S(θi, φi, θr, φr).
Because the hair bsdf model has multiple lobes, it is impractical to
sample all the lobes at the same time. So we first describe how to
efficiently sample each individual lobe; then we show how to com-
bine all the lobes by randomly selecting a lobe based on an esti-
mate of its energy. The longitudinal terms and azimuthal terms can
be sampled independently since they depend on different variables.

Specifically, we sample the spherical angles θi and φi separately,
and then convert them into the direction ωi. The pdf of the sam-
ple is a product of the longitudinal pdf and the azimuthal pdf as
p(ωi) = p(θi)p(φi). We use the inverse cumulative distribution
function (cdf ) technique described in [Pharr and Humphreys 2010]
to derive our analytic sampling functions.

Sampling Gaussians. Equation (1) uses Gaussian functions to
model the variation in longitudinal and azimuthal scattering. Box-
Muller transform is a general approach to draw samples from a
Gaussian distribution with an infinite domain [?]. However, for
this specific problem, we have to draw samples from a Gaussian
distribution with a finite domain, e.g. [−π/2+θr

2
, π/2+θr

2
]. Using

Box-Muller transform can result in samples outside of the finite do-
main (edge cases) that are difficult to handle (See appendix A).

Inverse cdf can be used to constrain the samples to fall within the
finite domain, but the lack of a closed form anti-derivative for Gau-
sisian makes this approach infeasible. Although there are numerical
approximations for the pdf and cdf of the Gaussian, they require the
evaluation of error functions or Taylor series [Pressa et al. 2007].
These methods are either computationally expensive or unstable at
the tail of the Gaussian. To overcome these limitations, we would
like to draw samples from a pdf that has a similar shape to the Gaus-
sian function and a closed-form antiderivative. Observing that the
Gaussian is a bell-shaped function with varying width and center,
we can approximate it using another bell-shaped function.

Cauchy distribution. The Cauchy distribution is a probability
distribution mainly used in physics, and it was recently used by
computer graphics researchers as a sampling distribution [Kulla
et al. 2011]. It is defined as:

f(γ, x− x0) = 1

π

[
γ

(x− x0)2 + γ2

]

Similar to the Gaussian, the Cauchy distribution is a bell-shaped
function with offset x0 and width γ. In contrast to the Gaussian, it
has an analytic antiderivative

P (x) =
1

π
tan−1

(
x− x0
γ

)

This simple form of the antiderivative makes it possible to derive
a sampling algorithm using the inverse cdf technique. The offset
and width of a Gaussian distribution can be directly used as the off-
set and width of the Cauchy distribution correspondingly. Figure 4
shows the plot of a set of Gaussian and Cauchy functions with same
widths and offsets. The fact that Cauchy distributions have wider
tails than Gaussians guarantees that using the Cauchy distribution
to approximate the Gaussian in importance sampling will not in-
crease variance. Using this approximation, we derive our sampling
method for each lobe.

3.2.1 Sampling Longitudinal Terms

Since the three longitudinal terms have the same form, we describe
the approach using generic symbols M , β and α. Note that we
ignore the 1/ cos2 θd terms for simplicity, since M alone accounts
for most of the variation in the longitudinal terms1. Substituting
the Gaussian functions in the M terms with Cauchy distributions
allows us to derive the sampling functions for incoming inclination

11/ cos2 θd term has a singularity when both θr and θi approach π/2
or −π/2. However, the projection term cos θi in the rendering equation
cancels its effect because cos θi/ cos

2 θd is a smooth function. Therefore
the M term remains the dominant source of variance.
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Figure 4: Cauchy and Gaussian distributions with same widths
and offsets. Both of distributions are normalized in the domain
[−π/2, π/2].

θi. Given a random variable ξ uniformly drawn from range [0, 1),
we can sample θi as:

θi = 2β tan(ξ(A−B) +B) + 2α− θr

where A = tan−1
(
π/4+θr/2−α

β

)
and B = tan−1

(
−π/4+θr/2−α

β

)
.

The longitudinal pdf can be computed as

p(θi) =
1

2 cos θi(A−B)

βx
(θh − α)2 + β2

3.2.2 Sampling Azimuthal Terms

All azimuthal terms are functions of relative azimuthal angle φ =
φr − φi. In our approach, we first sample φ, then compute φi =
φr − φ. The pdf of φ is the same as the pdf of φi since p(φi) =

p(φ) |dφi/dφ|−1 = p(φ).

SamplingNR. NR is evaluated as cos(φ/2). Deriving a sampling
function for this term is trivial. Given a uniform random variable ξ
in [0, 1), we sample φ as

φ = 2 sin−1(2ξ − 1)

then we can compute φi = φr − φ and the azimuthal pdf p(φi) =
p(φ) = 1

4
cos φ

2
.

SamplingNTT . NTT is defined with a Gaussian that is positive in
the range [0, 2π]. We take an approach similar to the longitudinal
terms. Given a uniform random variable ξ in [0, 1), we draw a
sample of φ as

φ = γTT tan

[
CTT

(
ξ − 1

2

)]
+ π

where CTT = 2 tan−1
(
π
γTT

)
. We then compute φi = φr − φ and

the azimuthal pdf p(φi) = p(φ) = 1
CTT

[
γTT

(φ−π)2+γ2TT

]
.

Sampling NTRT−g . NTRT-g is approximated as cos(φ/2). Since
it is the same as the NR term, we follow the same approach as sam-
pling NR.

Sampling Ng . Glint models the lighting effect caused by the
caustic light path inside hair strands. The azimuthal term of Glint
is defined as two Gaussian functions symmetric about the φ = 0
axis. Given a uniform random variable ξ from [0, 1), we choose
one of two glint lobes by setting the sign of φ and remap ξ back to
the range [0, 1) accordingly. Specifically, for ξ < 1/2, we set φ

positive and map ξ ← 2ξ. For ξ ≥ 1/2, we set φ negative and map
ξ ← 2(1− ξ). After that, we sample φ using the remapped ξ as

φ = γg tan(ξ(Cg −Dg) +Dg) + φg

where Cg = tan−1
(
π/2−φg
γg

)
, Dg = tan−1

(
−φg
γg

)
. Once

we have φ, we compute φi = φr ± φ, and compute its pdf as
p(φi) = 1

2
p(φ) = 1

2(Cg−Dg)

[
γg

(|φ|−φg)2+γ2g

]
, taking into account

our remapping of the random variable.

3.2.3 Energy-based lobe selection

We have discussed how to sample each individual lobe. To sample
the complete bsdf , we distribute samples to each lobe. A simple
solution is to uniformly select a lobe. To better match the energy
distribution of the bsdf , however, we use an energy-based lobe se-
lection scheme. For each sample, we select a lobe with a probability
proportional to an estimate of the energy of each lobe. We estimate
these energies as the product of the integrals of the longitudinal and
azimuthal terms. This results in the following estimates:

ER = 4
√
2πβRIR ETT = 2πβTTγTTITT

ETRT-g = 4
√
2πβTRTITRT Eg = 4πβTRT γgITRTIg

We use the Gaussian integral in the domain [−∞,∞] instead of
[−π/2, π/2] to compute the estimated energy. Although this is not
accurate in general, it is easy to compute and works well as an esti-
mation. The approximation error is less than 1% for β < 30◦ and
|α| < 20◦ and 0.003% for β < 20◦ and |α| < 10◦.

We provide step-by-step derivations and the Python code for the
sampling method in the supplemental material.

3.3 Implementation Details

Amortizing constants computation. It is important to note that
AR, ATT, ATRT, BR, BTT, BTRT, CTT, Cg and Dg in the sampling
functions are constant for all the samples of the same gathering
point and reflective direction ωr . We compute these constants once
and amortize the cost over all the samples.

Longitudinal grazing-angle pdf. Notice that the longitudinal pdf
has a singularity when θi approaches −π/2 or π/2. The sam-
ple evaluation becomes numerically unstable at grazing angles. To
avoid this problem, our implementation discards the sample if the
angle between ωi and u or −u is smaller then a predefined epsilon
(10−5 in our case). Although in theory this may bias the result, In
practice, it only rejects a small percentage of samples (< 0.001%)
and all discarded samples have negligible contribution with weights
(< 0.0001), resulting in negligible bias.

4 Results

4.1 Sample Distribution.

Figure 5 shows the sample distributions using the described impor-
tance sampling scheme. We use the Halton quasi-random sequence
to generate the samples since it is repeatable and stratified [Pharr
and Humphreys 2010]. Compared to uniform sampling (Figure 5a),
our importance sampling method (Figure 5b) concentrates samples
in regions of high importance. Figures 5c-5f show the sample dis-
tribution of each individual lobe.
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a. Uniform Sampling b. Importance Sampling

c. R Lobe d. TT Lobe

e. TRT-g Lobe f. g Lobe

Figure 5: Comparison of samples distributed using (a) uniform and
(b) importance sampling, where we use the pseudo-random Halton
sequence to generate well-distributed random numbers. We also
show the sample distributions of each individual lobe using our im-
portance sampling scheme. Notice the computed sample distribu-
tion match the energy distribution of the bsdf.

4.2 Rendering Result

Overview. We implemented our importance sampling scheme for
hair bsdf in a raytracing renderer written in C++. Moreover, to test
our approach in a movie production environment, we also imple-
mented our algorithm in a production renderer. Figure 6 and Fig-
ure 7 show comparisons of our method with uniform sampling. For
both sampling schemes, we stratify the random numbers and render
the images using multiple importance sampling (MIS) for direct il-
lumination2. These are the best conditions for uniform sampling.
Since we found our method to have negligible cost, we just report
sample count rather than timing.

Area Lighting. Physically correct area lights have become
widely adopted in production rendering. Figure 6(a) is a simple
scene with a large area light above the hair geometry rendered with
our raytracer. Uniform sampling exhibits significant noise at low
sampling rates (32 samples), while the importance sampled result
is relatively smooth. With 128 samples, the importance sampling
image has no visible noise, while the uniform sampled image still
has some distracting noise. Figure 7(a) is a production model lit
with a large area light rendered with a production renderer. Due to
the production renderer’s antialiasing techniques, only a few (32)
importance samples are required to generate a smooth image; while
uniform sampling required over 1k samples to converge.

Environment Lighting. Environment maps are used to add re-
alistic lighting to a scene. Figure 6(b) is a simple scene with an
environment map of Pisa Courtyard. The illumination from this
environment map is smooth with high color variation. In this case,
while uniform sampling is not able to clean up the noise in the trans-
mission and Glint highlights even at 256 samples, our importance
sampling method is able to provide a smooth result with just a few

2When using MIS, a sample count of 16 corresponds to 16 bsdf samples
and 16 light samples.

samples (64 samples). Figure 7(b) is a production model lit with
the environment map of Ennis-Brown House, where our importance
sampling method delivers better image quality than images render-
ing with 4× number of uniform samples.

Global Illumination. Global illumination enhances the overall
realism of a scene. Of the many available algorithms, we use a
path tracer since it is simple to implement and unbiased. In this
case, scattering rays for indirect illumination are generated with
bsdf sampling only, either uniform or with importance. Although
resolving multiple scattering using brute force path tracing is inher-
ently inefficient, it guarantees a physically correct result.

Figure 6(c) is a hair model lit by three area lights, and Figure 6(d)
is a hair model lit by the Grace Cathedral environment map. In
both scenes, the hair model is the only geometry. All the indirect
illumination is the result of multiple scattering inside the hair ge-
ometry. Figure 6(e) is a simple scene with a hair model inside the
Cornell Box, where indirect illumination comes from both the out-
side geometry and inside the hair geometry. For both uniform and
importance sampling, we have to use a lot more samples in these
tests than the previous direct lighting tests. While uniform sam-
pling takes a long time to converge, our method converges to the
correct result much faster with significantly fewer samples. Each
reference image used more than 200M uniform samples per pixel
and took over 60-80 hours to render.

5 Discussion and Limitations

Multiple Scattering. Our importance sampling algorithm is de-
rived for the single scattering function. We show multiple scattering
results rendered by path tracing, whose performance is drastically
improved by using our importance sampling algorithm. Approxi-
mation algorithms for multiple scattering are beyond the scope of
this paper. Although our sampling algorithm is not specifically de-
signed for these algorithms, we believe that they can benefit from
our work. For example, our importance sampling can be used to
drive the photon shooting of [Moon and Marschner 2006] and light
tracing of [Moon et al. 2008].

Extension to Marschner’s Model. We believe our approach can
be extended to support Marschner’s model[Marschner et al. 2003].
It can be directly applied to sample the longitudinal (Gaussian)
terms of the Marschner model3. However, applying it to the az-
imuthal terms is not trivial. Xu et al. proposed several approxima-
tions for fitting the azimuthal terms to Gaussian functions [Xu et al.
2011]. With these approximations, it would be possible to derive
a sampling algorithm using our approach, with some precomputa-
tion and a small amount of overhead for each sample. We leave this
extension to future work.

Integration with Other Sampling Techniques. Since our sam-
pling algorithm does not require additional data structures, it can
be easily integrated with other sampling techniques. We have only
shown our method applied in a path tracer with multiple importance
sampling, but it can also be used with other Monte Carlo tech-
niques, e.g. photon mapping, bidirectional path tracing, or even
more sophisticated unstructured illumination sampling techniques
[Wang and Åkerlund 2009].

Replacing Gaussian with Cauchy. In this paper, we derive our
pdf based on a bsdf model that uses Gaussian functions extensively.

3Marschner’s model uses normalized Gaussians instead of the unnor-
malized ones used in [Sadeghi et al. 2010]’s model, but this will not affect
the pdf derivation because the pdf is normalized by definition.
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Figure 6: Comparison of our importance sampling approach and simple uniform sampling in a ray tracing renderer. (a) Direct illumination
with an area light, our method is able efficiently sample the longitudinal lobes. (b) Direct illumination with environment lighting, our
method generates smooth result with significanly fewer samples than uniform sampling which fails to converge on the glint and transmission
highlights. (c) Global illumination with area lighting and (d) global illumination with environment lighting show that our method is able to
efficiently sample the scattering direction for multiple bounces and drastically reduce the sample number needed for convergence. (e) Global
illumination in a Cornell box shows our method efficiently gathers radiance from surrounding geometry.



For
Rev

iew
Only

UNIFORM / 64 SAMPLES IMPORTANCE / 64 SAMPLES 16 SAMPLES 32 SAMPLES 64 SAMPLES REFERENCE

(a)

IM
P

O
R

TA
N

C
E

U
N

IF
O

R
M

(b)
IM

P
O

R
TA

N
C

E
U

N
IF

O
R

M

Figure 7: Comparison of our importance sampling approach and simple uniform sampling in a production renderer: (a) Direct illumination
with area lighting; (b) direct illumination with environment lighting. While uniform sampling has trouble converging to a smooth image, our
method generates noise-free images with only a few samples.

Although the Cauchy distribution can provide a good sample dis-
tribution for the Gaussian (Figure 5), the shape of these two dis-
tributions do not match exactly (see Figure 4). As an extension of
our work, we propose a new hair bsdf by replacing all the Gaussian
functions in [Sadeghi et al. 2010]’s model with Cauchy distribu-
tions. This new bsdf model introduces some minor visual differ-
ences, but it allows for a better match to the pdf during importance
sampling. The comparison between this new bsdf and [Sadeghi
et al. 2010]’s model is out of the scope of this paper. Interested
readers can find comparisons using the new model in our supple-
mental material. All the results in this paper are generated using
[Sadeghi et al. 2010]’s model.

6 Conclusions

We presented an importance sampling algorithm for the hair bsdf ,
that is simple to implement and efficient to evaluate. By approx-
imating the Gaussian functions in the hair bsdf with Cauchy dis-
tribution, we were able to derive an analytic sampling algorithm
with significantly reduced variance. We show results of applying
our importance sampling method to render scenes with area light-
ing, environment lighting, indirect lighting and multiple scattering,
in both a production renderer and a research raytracer.
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A Box-Muller Transform

Although Box-Muller transform is easy to implement and works well for sampling
Gaussian function in general, it has a major shortcoming for our specific problem.
By definition, the incoming longitudinal angle θi has a valid range of [−π/2, π/2].
Ignoring offset α for brevity, θh has a valid range of [

−π/2+θr
2 ,

π/2+θr
2 ] (red

shaded area in Figure 8.a-b). Since Box-Muller transform generates samples from
(−∞,∞), many samples generated fall out of the valid range. Figure 8.c shows a
possible θh sample that is out of the valid range. These invalid samples can be handled
by rejection sampling but incurs the cost of wasted samples. Attempts to keep the
samples are complicated and prone to error (see discussion in Section B). Moreover,
Box-Muller transform does not provide a way to compute the Gaussian integral over
finite intervals (required for normalizing the pdf ).

While dealing with edge cases is inevitable and complicated using Box-Muller trans-
form, our approach does not have this short coming because it is based on an inverse
CDF technique that can sample θi directly. As a result, we can ensure both θi and θh
always fall into valid range.
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Figure 8: (a). For case θr = −π4 , θh has a valid range [− 3π
8 ,

π
8 ] in order

to make sure θi ∈ [−π2 , π2 ]. (b). The valid range of θh only cover a portion of
the entire Gaussian distribution. (c) Box-Muller transform draw samples from interval
(−∞,∞), some sample will end up outside the valid range. In this case, θh = 3π

4 .
(d). As a result, θi = 2θh − θr = 3π

4 , which is not within valid range. In [Hery
and Ramamoorthi 2011], this is handled by setting θi = π

2 − θi = π
4 . However,

this also changed θh from π
4 to 0, causing inconsistency between pdf, bsdf value and

the sampling direction ωi.

B Comparison to [Hery and Ramamoorthi
2011]

Hery and Ramamoorthi introduced a method to importance sample the R lobe of hair
using the Box-Muller transform[Hery and Ramamoorthi 2011]. They dealt with out of
range samples as follows:

1. Clamp θh by θmax;

2. If θi is outside of [−π/2, π/2], flip θi about the vector u to ensure it falls
within [−π/2, π/2].

There are several problems with their approach. First of all, clamping θh introduces
some amount of bias. More importantly, the way they handle the edge case where θi
is out of valid range [−π/2, π/2] is not mathematically correct. When θi is flipped
about vector u (pseudocode page 5 line 15), the sampled direction is changed, but
the pdf is not adjusted to reflect the altered direction. This introduces inconsistency
between the sampled scattering direction ωi and the computed pdf (Figure 8.d).

Furthermore, when computing the samples’ pdf for multiple importance sampling,
Hery and Ramamoorthi ignored the parts of the Gaussian outside of the valid range
(pseudocode on page 12). As a result the computed pdf does not integrate to one. This
can be verified by simple numerical tests.

We have implemented Hery and Ramamoorthi’s algorithm, please see our supplemen-
tal material for rendering comparisons between our two approaches.



3 Derivations

3.1 Derivation of Longitudinal Sampling

Given a uniform random variable ξ in [0, 1), we want to draw a sample of θi from the pdf

p(θi) ∝
[

β

( θi+θr
2
− α)2 + β2

]
1

cos θi

The 1/ cos θi term is the correcting factor when transforming integrals over solid angle into integrals over spherical coordinates. The normal-
ization gives

∫ π
2

−π
2

c

[
β

( θi+θr
2
− α)2 + β2

]
1

cos θi
cos θidθi

= 2c tan−1

(
θi − α
β

)∣∣∣∣
π/2+θr

2

−π/2+θr
2

= 1

Therefore c = 1
2(A−B)

, where A = tan−1
( π/2+θr

2
−α

β

)
and B = tan−1

( −π/2+θr
2

−α
β

)
. The pdf of θi is:

p(θi) =
1

2 cos θi(A−B)

β(
θi+θr

2
− α

)2
+ β2

The cdf can be computed by integrating the pdf

P (θi) =

∫ θi

−π
2

c

[
β

(
θ′i+θr

2
− α)2 + β2

]
1

cos θ′i
cos θ′idθ

′
i

=
tan−1

( θi+θr
2
−α

β

)
−B

A−B

By inverting the cdf , we sample θi, given a uniform random variable ξ from [0, 1), as

θi = 2β tan(ξ(A−B) +B) + 2α− θr

3.2 Derivation of NR and NTRT-g Sampling

Given a uniform random variable ξ from [0, 1), we want to draw a sample of φ from the pdf

p(φ) ∝ cos
φ

2

The normalization gives that ∫ π

−π
c cos

φ

2
dφ = c

∫ π
2

−π
2

2 cosxdx = 2csinx
∣∣∣
π
2

−π
2

= 4c = 1

Therefore, c = 1/4. The pdf of φ is

p(φ) =
1

4
cos

φ

2

The cdf can be computed by integrating the pdf

∫ φ

−π

1

4
cos

φ′

2
dφ =

1

2
sinx

∣∣∣
φ
2

−π
2

=
1

2

(
sin

φ

2
+ 1
)

By inverting the cdf , we sample φ, given a uniform random variable ξ2 from [0, 1), as

φ = 2 sin−1(2ξ2 − 1)

Then we can compute φi = φr − φ. We have to transform the pdf p(φ) to p(φi) and it can be proved that p(φi) =
∣∣∣ dφidφ

∣∣∣
−1

p(φ) = p(φ)



3.3 Derivation of NTT Sampling

Given a uniform random variable ξ from [0, 1), we want to draw a sample of φ from the pdf

p(φ) ∝ γTT

(φ− π)2 + γ2
TT

The normalization gives that ∫ 2π

0

c

[
γTT

(φ− π)2 + γ2
TT

]
dφ = c

[
tan−1

(
φ− π
γTT

)]∣∣∣∣
2π

0

= 1

Therefore c = 1
CTT

where CTT = 2 tan−1 (π/γTT). Then we can compute the pdf of φ

p(φ) =
1

CTT

[
γTT

(φ− π)2 + γ2
TT

]

The cdf can be computed by integrating the pdf

∫ φ

0

c

[
γTT

(φ′ − π)2 + γ2
TT

]
dφ′ =

1

CTT

[
tan−1

(
φ′ − π
γTT

)]∣∣∣∣
φ

0

=
tan−1

(
φ−π
γTT

)

CTT
+

1

2

By inverting the cdf , we sample φ, given a uniform random variable ξ from [0, 1), as

φ = γTT tan

[
CTT

(
ξ − 1

2

)]
+ π

Then we can compute φi = φr − φ and p(φi) = p(φ)

3.4 Derivation of Ng Sampling

Given a uniform random variable ξ from [0, 1), we want to draw samples of φ from the pdf

p(φ) ∝ γg

(|φ| − φg)2 + γ2
g

We first use ξ to randomly pick a half of the lobe and remap the random variable ξ2 back to [0, 1). Specifically, for ξ < 1/2, we set φ positive
and map ξ ← 2ξ. For ξ ≥ 1/2, we set φ negative and map ξ ← 2(1 − ξ). Then we sample φ in the domain [0, π/2). The normalization
gives ∫ π/2

0

c

[
γg

(|φ| − φg)2 + γ2
g

]
dφ = c

[
tan−1

(
φ− φg

γg
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π/2

0

= 1

Therefore c = 1
Cg−Dg

where Cg = tan−1
(
π/2−φg
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)
and Dg = tan−1

(
−φg
γg

)
. we can compute the pdf of φ

p(φ) =
1

Cg −Dg

[
γg

(φ− φg)2 + γ2
g

]

The cdf can be computed by integrating the pdf

∫ φ

0

c
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g
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1

Cg −Dg

[
tan−1
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0
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tan−1
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φ−φg
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Cg −Dg

We sample φ, given a uniform random variable ξ from [0, 1), as

φ = γg tan(ξ(Cg −Dg) +Dg) + φg

Then we can compute φi = φr ± φ. The sign of φ is determined by the value of the original random variable ξ before remapping. We also
transform the pdf to account the remapping of the random variable.

p(φi) =
1

2
p(|φ|) = 1

2(Cg −Dg)

[
γg

(|φr − φi| − φg)2 + γ2
g

]



4 Rendering Comparison to [Hery and Ramamoorthi 2011]

In Appendix B of the paper, we discussed some protential problems of Hery and Ramamoorthi’s solution for hair reflectance importance
sampling [Hery and Ramamoorthi 2011]. We implemented their approach based on the pseudocode in their paper and compared it to our
method using scenes in our paper. Note that [Hery and Ramamoorthi 2011] did not provide solutions for sampling lobes other than the R
lobes. To make an fair comparison, we only rendered the R lobe in all the examples.

Figure 2 shows the rendering result of [Hery and Ramamoorthi 2011] and our method. The error images shows that Hery and Ramamoorthi’s
method generate extra energy at grazing angles. Figure 1 is the error plots of area light scene in Figure 2. As the sample count increases, our
method constantly produces lower error compare to [Hery and Ramamoorthi 2011].

(a). L2 error vs. sample count (b). Maximum pixel error vs. sample count
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Figure 1: L2 error plots of area light scene in Figure 2 rendered using Hery and Ramamoorthi’s method and our method. Error is measured
as the differences in comparison to the reference image. As the sample count increases our method consistently achieves lower error than
Hery and Ramamoorthi’s method.



Reference [Hery and Ramamoorthi 2011] Our Method

E
nv

ir
on

m
en

tL
ig

ht
in

g

0.000 

0.016 

0.032 

0.048 

0.064+ 

A
re

a
L

ig
ht

in
g

Figure 2: Error Images of [Hery and Ramamoorthi 2011] and our method. The edge cases of Box-Muller transform are not correctly handled
in [Hery and Ramamoorthi 2011], resulting in incorrect energy estimation at grazing angles. The images will not converge to correct solution
as sample count increases. (The error images are computed using per-pixel L2 difference.)



5 Pseudo Code

Here is the Python pseudo code for our importance sampling algorithm. To keep the code simple, we used the simple uniform lobe selection
instead of the energy-based lobe selection. Moreover, it is done without amortizing the cost of constants computation.

# uv - a pair of uniform random variable in [0,1]
# I - viewing direction
# L - light direction
# beta_R, beta_TT, beta_TRT - width of longitudinal gaussian
# alpha_R, alpha_TT, alpha_TRT - offset of longitudinal gaussian
# gamma_G - width of glint
# gamma_TT - width of transmission
# phi_g - offset of glint

pi = 3.1415926

# sample the primary lobe
def sample_R_lobe(uv, I):

(theta_r, phi_r) = compute_angle(I)

a_R = arctan(((pi/2 + theta_r)/2 - alpha_R) / beta_R)
b_R = arctan(((-pi/2 + theta_r)/2 - alpha_R) / beta_R)

t = beta_R * tan(uv[0] * (a_R - b_R) + b_R)
theta_h = t + alpha_R
theta_i = (2 * theta_h - theta_r)

phi = 2 * arcsin(1 - 2 * uv[2])
phi_i = phi_r - phi
phi_pdf = cos(phi/2) / 4

return compute_direction(theta_i, phi_i)

# sample the transmission lobe
def sample_TT_lobe(uv, I):

(theta_r, phi_r) = compute_angle(I)

a_TT = arctan(((pi/2 + theta_r)/2 - alpha_TT) / beta_TT)
b_TT = arctan(((-pi/2 + theta_r)/2 - alpha_TT) / beta_TT)
c_TT = 2 * arctan(pi/ 2 / gamma_TT);

t = beta_TT * tan(uv[0] * (a_TT - b_TT) + b_TT)
theta_h = t + alpha_TT
theta_i = (2 * theta_h - theta_r)

double p = gamma_TT * tan((v - 0.5) * c_TT)
double phi = p + pi
double phi_i = phi_r - phi

return compute_direction(theta_i, phi_i)

# sample the secondary highlight lobe
def sample_TRT_G_lobe(uv, I):

(theta_r, phi_r) = compute_angle(I)

a_TRT = arctan(((pi/2 + theta_r)/2 - alpha_TRT) / beta_TRT)
b_TRT = arctan(((-pi/2 + theta_r)/2 - alpha_TRT) / beta_TRT)

t = beta_TRT * tan(uv[0] * (a_TRT - b_TRT) + b_TRT)
theta_h = t + alpha_TRT
theta_i = (2 * theta_h - theta_r)

phi = 2 * arcsin(1 - 2 * uv[2])
phi_i = phi_r - phi
phi_pdf = cos(phi/2) / 4

return compute_direction(theta_i, phi_i)



# sample the glint lobe
def sample_G_lobe(uv, I):

(theta_r, phi_r) = compute_angle(I)

a_TRT = arctan(((pi/2 + theta_r)/2 - alpha_TRT) / beta_TRT)
b_TRT = arctan(((-pi/2 + theta_r)/2 - alpha_TRT) / beta_TRT)
c_G = atan((pi/2 - phi_g) / gamma_G)
d_G = atan(-phi_g / gamma_G)

t = beta_TRT * tan(uv[0] * (a_TRT - b_TRT) + b_TRT)
theta_h = t + alpha_TRT
theta_i = (2 * theta_h - theta_r)

if(uv[1] < 0.5):
uv[1] = 2 * uv[1]
sign = 1

else:
uv[1] = 2 * (1 - uv[1])
sign = -1

p = gamma_G * tan(uv[1] * (c_G - d_G) + d_G)
phi = sign * (p + phi_g)
phi_i = phi_r - phi

return compute_direction(theta_i, phi_i)

# compute the pdf of primary highlight
def compute_R_pdf(L, I):

(theta_r, phi_r) = compute_angle(I)
(theta_i, phi_i) = compute_angle(L)

if(pi/2 - theta_i < epsilon):
return 0

a_R = arctan(((pi/2 + theta_r)/2 - alpha_R) / beta_R)
b_R = arctan(((-pi/2 + theta_r)/2 - alpha_R) / beta_R)

theta_h = (theta_i + theta_r) / 2
t = theta_h - alpha_R
theta_pdf = beta_R / (t*t + beta_R*beta_R) / (2*(a_R - b_R) * cos(theta_i))

phi = phi_r - phi_i
phi_pdf = cos(phi/2) / 4

return theta_pdf * phi_pdf

# compute the pdf of transmission
def compute_TT_pdf(L, I):

(theta_r, phi_r) = compute_angle(I)
(theta_i, phi_i) = compute_angle(L)

if(pi/2 - theta_i < epsilon):
return 0

a_TT = arctan(((pi/2 + theta_r)/2 - alpha_TT) / beta_TT)
b_TT = arctan(((-pi/2 + theta_r)/2 - alpha_TT) / beta_TT)
c_TT = 2 * arctan(pi/ 2 / gamma_TT);

theta_h = (theta_i + theta_r) / 2
t = theta_h - alpha_R
theta_pdf = beta_R / (t*t + beta_R*beta_R) / (2*(a_R - b_R) * cos(theta_i))

phi = abs(phi_r - phi_i)
if phi < pi/2:

phi_pdf = 0



else:
p = pi - phi
phi_pdf = (gamma_TT / (p * p + gamma_TT * gamma_TT)) / c_TT

return theta_pdf * phi_pdf

# compute the pdf of secondary highlight without glint
def compute_TRT_G_pdf(L, I):

(theta_r, phi_r) = compute_angle(I)
(theta_i, phi_i) = compute_angle(L)

if(pi/2 - theta_i < epsilon):
return 0

a_TRT = arctan(((pi/2 + theta_r)/2 - alpha_TRT) / beta_TRT)
b_TRT = arctan(((-pi/2 + theta_r)/2 - alpha_TRT) / beta_TRT)

theta_h = (theta_i + theta_r) / 2
t = theta_h - alpha_R
theta_pdf = beta_R / (t*t + beta_R*beta_R) / (2*(a_R - b_R) * cos(theta_i))

phi = phi_r - phi_i
phi_pdf = cos(phi/2) / 4

return theta_pdf * phi_pdf

# compute the pdf of glint term
def compute_G_pdf(L, I):

(theta_r, phi_r) = compute_angle(I)
(theta_i, phi_i) = compute_angle(L)

if(pi/2 - theta_i < epsilon):
return 0

a_TRT = arctan(((pi/2 + theta_r)/2 - alpha_TRT) / beta_TRT)
b_TRT = arctan(((-pi/2 + theta_r)/2 - alpha_TRT) / beta_TRT)
c_G = arctan((pi/2 - phi_g) / gamma_G)
d_G = arctan(-phi_g / gamma_G)

theta_h = (theta_i + theta_r) / 2
t = theta_h - alpha_R
theta_pdf = beta_R / (t*t + beta_R*beta_R) / (2*(a_R - b_R) * cos(theta_i))

phi = abs(phi_r - phi_i)
p = phi - phi_g
phi_pdf = gamma_G / (p*p + gamma_G * gamma_G) / (2 * (c_G - d_G))

return theta_pdf * phi_pdf

def compute_pdf(L, I):
pdf_R = compute_R_pdf(L, I)
pdf_TT = compute_TT_pdf(L, I)
pdf_TRT_G = compute_TRT_G_pdf(L, I)
pdf_G = compute_G_pdf(L, I)
return (pdf_R + pdf_TT + pdf_TRT_G + pdf_G) / 4

def sample_brdf(uv, I):
if uv[0] < 0.5 and uv[1] < 0.5:

# Sample R lobe
uv[0] = 2 * uv[0]
uv[1] = 2 * vv[1]
L = sample_R_lobe(uv, I)

elif u >= 0.5 and v < 0.5:
# Sample TT lobe
uv[0] = 2 * (1 - uv[0])
uv[1] = 2 * uv[1]



L = sample_TT_lobe(uv, I)
elif u < 0.5 and v >= 0.5:

# Sample TRT-G lobe
uv[0] = 2 * uv[0]
uv[1] = 2 * (1 - uv[1])
L = sample_TRT_G_lobe(uv, I)

else:
# Sample glint lobe
uv[0] = 2 * (1 - uv[0])
uv[1] = 2 * (1 - uv[1])
L = sample_G_lobe(uv, I)

pdf = compute_pdf(L, I)
return (L, pdf)
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